![]() |
Mixxx
|
00001 /* 00002 * Copyright (c) 2001-2006 MUSIC TECHNOLOGY GROUP (MTG) 00003 * UNIVERSITAT POMPEU FABRA 00004 * 00005 * 00006 * This program is free software; you can redistribute it and/or modify 00007 * it under the terms of the GNU General Public License as published by 00008 * the Free Software Foundation; either version 2 of the License, or 00009 * (at your option) any later version. 00010 * 00011 * This program is distributed in the hope that it will be useful, 00012 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 * GNU General Public License for more details. 00015 * 00016 * You should have received a copy of the GNU General Public License 00017 * along with this program; if not, write to the Free Software 00018 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00019 * 00020 */ 00021 00022 #include <cmath> 00023 #include "FourierTransform.hxx" 00024 #include <iostream> 00025 00026 #define SWAP(a,b) do {double swaptemp=(a); (a)=(b); (b)=swaptemp;} while(false) 00027 00028 // constructor 00029 // input points to the input data. n is twice the frame size 00030 // complex = 0 -> augmentation with 0s is necessary 00031 FourierTransform::FourierTransform(unsigned long int framesize, double datanorm, bool isComplex) 00032 : mFrameSize(framesize) 00033 , mIsComplex(isComplex) 00034 { 00035 _spectrum.resize(2*mFrameSize); 00036 #if USE_FFTW3 00037 _realInput = (double*) fftw_malloc(sizeof(double) * mFrameSize); 00038 _complexOutput = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * mFrameSize); 00039 00040 fftw_import_system_wisdom(); 00041 if (isComplex) 00042 _plan = fftw_plan_dft_1d(framesize, _complexOutput, _complexOutput, 1, FFTW_ESTIMATE); 00043 else 00044 _plan = fftw_plan_dft_r2c_1d(framesize, _realInput, _complexOutput, FFTW_ESTIMATE); 00045 #endif 00046 } 00047 00048 FourierTransform::~FourierTransform() 00049 { 00050 #if USE_FFTW3 00051 fftw_destroy_plan(_plan); 00052 fftw_free(_realInput); 00053 fftw_free(_complexOutput); 00054 #endif 00055 } 00056 00057 //---------------------------------------------------------------------------------------- 00058 // FourierTransform transform code adapted from: Chapter 12, Fast Fourier Transform from Numerical 00059 // Recipes in C: The Art of Scientific Computing. Numerical Recipes Software (1988-1992) 00060 // Cambridge University Press, Cambridge, accessed 25.08.04, 00061 // available at http://www.library.cornell.edu/nr/cbookcpdf.html 00062 00063 void doFourierTransform(double * data, unsigned frameSize) 00064 { 00065 // Matlab indeces, data[0] is out of bounds TOREMOVE? 00066 const unsigned long n=frameSize<<1; //n is the data array size 00067 for (unsigned long i=1, j=1; i<n; i+=2) { 00068 if (j>i) { 00069 SWAP(data[j], data[i]); 00070 SWAP(data[j+1], data[i+1]); 00071 } 00072 unsigned long m=frameSize; 00073 while (m >= 2 && j>m) { 00074 j-= m; 00075 m >>= 1; 00076 } 00077 j += (m); 00078 } 00079 //now Danielson-Lanczos 00080 unsigned long istep; 00081 for (unsigned long mmax = 2; mmax<n; mmax = istep) 00082 { 00083 istep = mmax << 1; 00084 const double theta =(6.28318530717959/mmax); // multiply by -1 here for ifft 00085 double wtemp = sin(0.5*theta); 00086 double wpr = -2.0*wtemp*wtemp; 00087 double wpi = sin(theta); 00088 double wr=1.0; 00089 double wi=0.0; 00090 for(unsigned long m=1; m<mmax; m+=2) { 00091 for (unsigned long i=m; i<=n; i+=istep) { 00092 unsigned long j = i+mmax; 00093 double tempr = float (wr*data[j] - wi*data[j+1]); 00094 double tempi = float (wr*data[j+1] + wi*data[j]); 00095 data[j] = data[i] - tempr; 00096 data[j+1] = data[i+1] - tempi; 00097 data[i] += tempr; 00098 data[i+1] += tempi; 00099 } 00100 wtemp=wr; 00101 wr = wtemp*wpr - wi*wpi + wr; //trigonometric recurrence 00102 //wr = (wtemp=wr)*wpr - wi*wpi + wr; //trigonometric recurrence 00103 wi = wi*wpr + wtemp*wpi + wi; 00104 } 00105 } 00106 } 00107 00108 template <typename T> 00109 void FourierTransform::doItGeneric(const T * input) 00110 { 00111 double * spectrum = &_spectrum[0]; 00112 #if USE_FFTW3 00113 fftw_complex * complexOutput = &_complexOutput[0]; 00114 if (mIsComplex) 00115 { 00116 for (unsigned long i=0; i<mFrameSize; i++) 00117 { 00118 complexOutput[i][0] = input[i<<1]; 00119 complexOutput[i][1] = input[(i<<1)+1]; 00120 } 00121 fftw_execute(_plan); 00122 for (unsigned long i=0; i<mFrameSize*2; i+=2) 00123 { 00124 spectrum[i] = complexOutput[i/2][0]; 00125 spectrum[i+1] = complexOutput[i/2][1]; 00126 } 00127 } 00128 else 00129 { 00130 for (unsigned long i=0; i<mFrameSize; i++) 00131 { 00132 _realInput[i] = input[i]; 00133 } 00134 fftw_execute(_plan); 00135 for (int i=0; i<mFrameSize; i+=2) 00136 { 00137 spectrum[i] = complexOutput[i/2][0]; 00138 spectrum[i+1] = - complexOutput[i/2][1]; 00139 } 00140 for (int i=1; i<mFrameSize; i+=2) 00141 { 00142 unsigned j = mFrameSize*2-i; 00143 spectrum[j] = complexOutput[i/2][0]; 00144 spectrum[j+1] = complexOutput[i/2][1]; 00145 } 00146 } 00147 #else 00148 if (mIsComplex) 00149 { 00150 for (unsigned long i=0; i<mFrameSize*2; i++) 00151 spectrum[i] = input[i]; 00152 } 00153 else 00154 { 00155 for (unsigned long i=0; i<mFrameSize*2; i+=2) 00156 { 00157 spectrum[i] = input[i/2]; 00158 spectrum[i+1] = 0.0; 00159 } 00160 } 00161 double * data = spectrum-1; // Hack to use Matlab indeces TOREMOVE? 00162 doFourierTransform(data, mFrameSize); 00163 #endif 00164 } 00165 00166 void FourierTransform::doIt(const float * input) 00167 { 00168 doItGeneric(input); 00169 } 00170 void FourierTransform::doIt(const double * input) 00171 { 00172 doItGeneric(input); 00173 } 00174 00175 //------------------------------------------------------------------------- 00176